
pollosky.it 2009

1

DOCUMENTATION BY DEVELOPER.COM (http://www.developer.com)

SWT Programming with Eclipse

By Koray Guclu

"The best way to predict the future is to invent it."—Alan Kay

1. Why SWT?

SWT is a cross platform GUI developed by IBM. Why has IBM created another GUI? Why have

not they used existing Java GUI frameworks? To answer those questions, we need to go back

to the early days of Java.

Sun has created a cross platform GUI framework AWT (Abstract Windowing Toolkit). The AWT

framework uses native widgets but it was suffering from a LCD problem. The LCD problem

causes loss of major platform features. In other words, if platform A has widgets 1–40 and

platform B has widgets 20–25, the cross-platform AWT framework only offers the intersection

of these two sets.

To solve this problem, Sun has created a new framework that uses emulated widgets instead

of native widgets. This approach solved the LCD problem and provided a rich set of widgets

but it has created other problems. For instance, Swing applications no longer look like native

applications. Although they're the latest improvements in the JVM, Swing applications suffer

performance problems that do not exist in their native counterparts. Moreover, Swing

applications consume too much memory, which is not suitable for small devices such as PDAs

and Mobile Phones.

IBM has decided that neither of the approaches fulfill their requirements. Consequently, IBM

has created a new GUI library, called SWT,which solves the problems seen with the AWT and

the Swing frameworks. The SWT framework accesses native widgets through JNI. If a widget is

not available on the host platform, SWT emulates the unavailable widget.

2. Building Blocks of an SWT Application

Display, Shell, and Widgets are basic building blocks of an SWT application. Displays are

responsible from managing event loops and controlling communication between the UI thread

and other threads. Shell is the window in an application managed by the OS window manager.

Every SWT application requires at least one Display and one or more Shell instances.

Figure 1. An SWT application from different perspectives.

pollosky.it 2009

2

Figure 1 shows an SWT application from different perspectives. The first diagram is the

simplified inheritance diagram of the UI objects. The second diagram is the containment

structure of the UI objects. The third diagram is the created UI.

If an application uses multiple threads, each thread uses its own instance of a Display object.

You can get the current active instance of a Display object by using the static

Display.getCurent() method.

A Shell represents a window in a particular operating system. A shell can be maximized,

normal, or minimized. There are two types of shells. The first one is the top-level shell that is

created as a child, main window of the Display. The second one is a dialog shell that depends

on the other shells.

The type of a Shell depends on style bits passed to the Shell's constructor. The default value of

a Shell is DialogShell. That is to say, if nothing is given to the parameter, it is by default a

DialogShell. If a Display object is given to the parameter, it is a top-level shell.

Some widget properties must be set at creation time. Those widget properties are called style

bits. Style bits are defined as constants in SWT class, for example, Button button = new

Button(shell, <styleBits>). It is possible to use more then one style bit by using the OR

operation |. For instance, to use a bordered push button, you need to use SWT.PUSH |

SWT.BORDER as style bit parameters.

3. Environment Set-Up

Developing an SWT application is different from developing a Swing application. To begin with

an SWT application development, you need add SWT libraries to your classpath and set

necessary environment variables accordingly.

The first library that you need is the swt.jar file that is under the

ECLIPSE_HOME\eclipse\plugins\org.eclipse.swt.win32_2.1.0\ws\win32 directory. Depending on

the version of the Eclipse that you are using, you might need to use a different directory. The

swt.jar file must be added to your classpath to make this go to Project->Properies-

>JavaBuildPath->Libraries->Add Variable -> Eclipse Home ->Extend and select the

swt.jar library under the director abovey and then click on OK.

Afterwards, you will be able to compile an SWT application but, because of a runtime exception

shown below, it won't be able to run because the swt.jar library uses native libraries. You need

to set the java.library.path environment variable to use native libraries in Java.

Console output

java.lang.UnsatisfiedLinkError: no swt-win32-2133 in java.library.path

at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1403)

at java.lang.Runtime.loadLibrary0(Runtime.java:788)

at java.lang.System.loadLibrary(System.java:832)

...

at org.eclipse.swt.widgets.Display.<init>(Display.java:287)

at Main.main(Main.java:25)

Exception in thread "main"

To set the java.library.path variable, go to Run-> Run...-> Java Applicaton-> New -

>Arguments -> VM Arguments. Thereafter, if neccesary, modify the path below and paste

it to the VM Arguments field.

-Djava.library.path=c:\eclipse\plugins\org.eclipse.swt.win32_2.1.0\os\win32\x86

pollosky.it 2009

3

Loading native libraries

If you need to load any native library that your application uses, you can use the

Runtime.getPlatform.loadLibrary("libraryname") method.

Finishing these steps will enable you to run an SWT application within your eclipse

environment.

4. Your First SWT Application

Creating a typical SWT application requires the following steps:

• Create a Display

• Create one or more Shells

• Set a Layout manager of the Shell

• Create widgets inside the Shells

• Open the Shell window

• Write an event dispatching loop

• Dispose display

You can use the following code template to quickly run the code snippets in this article. You

can copy and paste the code to the area, as shown in Source 1.

Source 1. SWT application template

import

org.eclipse.swt.layout.RowLayout;

import

org.eclipse.swt.widgets.Display;

import org.eclipse.swt.widgets.Shell;

public class SliderExample

{

 public static void main(String

args[])

 {

 Display display = new Display();

 Shell shell = new Shell(display);

 shell.setLayout(new

RowLayout());

 // ------------------------

 // Your code comes to here.

 // ------------------------

 shell.pack();

 shell.open();

 while(!shell.isDisposed())

 {

 if(!display.readAndDispatch())

 display.sleep();

 }

 display.dispose();

 }

}

pollosky.it 2009

4

This example displays an empty window. You can add your widgets to the template above.

Every SWT application requires a Display and one or more Shells. The Shell is a

composite object; it can contain other composite objects. If the layout of the shell is not

set, added widgets to the Shell won't be visible. The Shell window must be opened to be

displayed. The event handling loop reads and dispatches GUI events. If there is no event

handling loop, the application window cannot be shown, even if the Shell window is opened by

the open() method. Afterwards, you should dispose of the Display, when the Shell is

discarded.

Importing required libraries

You can use the Source->Organize Imports menu or Ctrl+Shift+O to import the required libraries

automatically.

5. Running SWT Applications Outside of Eclipse

To run the application without using Eclipse, the swt.jar library must be in your classpath, and

the java.library.path enviroment variable must be set properly. Depending on the host

platform, the appropriate native library file must be available. For the Windows platform, you

can do the following to make the native library configuration for your application:

1. Put swt.dll in the same directory as the program.

2. Put swt.dll in the JAVA_HOME\bin\ directory.

3. Put swt.dll in the c:\windows\system32 directory.

javac classpath c:\swt\swt.jar HelloWorld.java

Java classpath c:\swt\swt.jar;. Djava.library.path=c:\swt HelloWorld

The java.library.path is the required environment variable for the JNI. If you don't set this

environment, your DLL class is not accessible. In that case, the application cannot run properly

and throws an exception.

SWT libraries

Swt libraries are available under the Eclipse plug-in directory. If you want to get the SWT libraries

without downloading the whole Eclipse package, it is possible to download a single SWT library

under the http://www.eclipse.org/downloads directory.

6. SWT Packages

The SWT consists of the following main packages. Definitions of the packages are taken from

the Eclipse API documentation. You can find the API documentation on the Eclipse Web site.

org.eclipse.swt: contains classes that define constants and exceptions that are used by SWT

classes. An SWT package consists of three classes: SWT, SWTException and, SWTError. The

SWT will probably be your favorite class because it contains constants for SWT libraries such

as keyboard, error, color, layout, text style, button etc. constants.

org.eclipse.swt.widgets: Contains most core SWT widget components, including the support

interface and classes.

org.eclipse.swt.events: Defines typed events, listeners and events, that SWT components

use. This package contains three different groups of classes: Listener interfaces, Adapter

classes, and Event class.

org.eclipse.swt.dnd: Contains classes for drag-and-drop support of the SWT widgets.

org.eclipse.swt.layout: Contains classes providing automated positioning and sizing of the

SWT widgets.

org.eclipse.swt.print: Contains classes providing print support for the SWT widgets.

org.eclipse.swt.graphics: Package provides the classes which implement points, rectangles,

pollosky.it 2009

5

regions, colors, cursors, fonts, graphics contexts (that is, GCs) where most of the primitive

drawing operations are implemented, and images including both the code for displaying them

and the public API for loading/saving them.

7. Dialogs

Dialog implementations are native. That is to say, dialogs, like widgets, are platform

components. Dialogs in SWT are derived from the Dialog abstract class. A dialog is not a

widget but it can contain widgets.

Figure 2. Dialog class hierharcy.

There are different types of dialogs available. Some dialogs can have specific properties. A a

dialog can be used as shown in Source 2.

Source 2. MessageBox example

MessageBox messageBox =

 new MessageBox(shell, SWT.OK|SWT.CANCEL);

if (messageBox.open() == SWT.OK)

{

 System.out.println("Ok is pressed.");

}

Each dialog's open() method returns different types. For instance, the MessageBox dialog

returns int from the open() metod. Therefore, one must write different conditions to handle the

return value for each dialog.

ColorDialog shows a color selection pallet. It returns an RGB object from return method.

DirectoryDialog enables you to select a directory. It returns A String from THE open() method.

The returning value is the selected directory. It is also possible to set additional filters to filter

the directories.

The Font dialog enables a user to select a font from all available fonts in the system. It returns

a FontData object from the open() method.

FileDialog enables a user to select a file. Additionally, you can set an extension filter, path

filter, and filename filters. This dialog has the styles shown in Table 1:

Table 1. SWT Dialog style bit constants

SWT.OPEN
Shows Open button in the

dialog

SWT.SAVE
Shows Save button in the

dialog

pollosky.it 2009

6

PrintDialog enables a user to select a printer before starting a print job. It returns a Printer

Data object from the open() method.

The MessageBox dialog is used to give feedback to the user. You can combine different styles

by the | operation as shown in Source 3.

Source 3. MessageBox example

 MessageBox messageBox =

 new MessageBox(shell,

 SWT.OK|

 SWT.CANCEL|

 SWT.ICON_WARNING);

messageBox.setMessage("www.korayguclu.de");

 messageBox.open();

The resulting message box of the above example is shown in Figure 3.

Figure 3. MessageBox dialog.

Available button constants are listed below. A combination of different buttons can be made by

using the | operation. The SWT framework builds the dialog depending on the style bits. The

button constants are: SWT.ABORT, SWT.OK, SWT.CANCEL, SWT.RETRY, SWT.IGNORE,

SWT.YES, and SWT.NO.

Table 2 shows a list of available icons to be used by dialogs.

Table 2. SWT icon style bit constants

SWT.ICON_ERROR

SWT.ICON_INFORMATION

SWT.ICON_QUESTION

SWT.ICON_WARNING

SWT.ICON_WORKING

pollosky.it 2009

7

8. Widgets

The SWT GUI objects derived from Widget and Control classes. The Widget object is the base

class and defines methods common to all GUI classes. The Control class is the base class of all

the windowed GUI classes, which means that the components derived from Control require a

window or dialog to be displayed.

Menu objects also require a window to be displayed, but this requirement is indirectly satisfied.

A Menu object requires a Control object.

Figure 4. Widget class hierarchy.

Figure 4 shows the widget class hierarchy. The Widget, Item, ScrollBar, and Control classes

are abstract classes.

8.1. Widget Events

Widget events are summarized in Table 3. For the sake of simplicity, the table contains only

the event names. It is easy to figure out the name of an event class by using this

<EventName>Event. Likewise, the name of the associated listener can be figured out by

using <Listener Name>Listener. Each event does not have a matching adaptor class. For

that reason, events having adaptors are marked in bold. The name of an adaptor can be

figured out by using <EventName>Adaptor.

Examples:

Event Name is a Control, event class is a ControlEvent, listener class is a ControlListener,

adaptor class is a ControlAdaptor.

Table 3. SWT Events

Event Name Widgets Generated When

Arm MenuItem a menu item is highlighted

Control Control, TableColumn, Tracker a control is resized or moved

Dispose Widget a widget is disposed

Focus Control a control gains or loses focus

Help Control, Menu, MenuItem the user requests help (e.g. by

pressing the F1 key)

Key Control a key is pressed or released

when the control has keyboard

focus

pollosky.it 2009

8

Menu Menu a menu is hidden or shown

Modify Combo, Text a widget's text is modified

Mouse Control the mouse is pressed, released,

or double-clicked over the

control

MouseMove Control the mouse moves over the

control

MouseTrack Control the mouse enters, leaves, or

hovers over the control

Paint Control a control needs to be repainted

Selection Button, Combo, CoolItem, List, MenuItem, Sash, Scale,

ScrollBar, Slider, StyledText, TabFolder, Table, TableColumn,

TableTree, Text, ToolItem, Tree

an item is selected in the

control

Shell Shell the shell is minimized,

maximized, activated,

deactivated, or closed

Traverse Control the control is traversed

(tabbed)

Tree Tree, TableTree a tree item is collapsed or

expanded

Verify Text, StyledText a widget's text is about to be

modified

8.2. Useful widgets

Figure 5. Control class hierarchy.

pollosky.it 2009

9

All Control classes can be bordered. You can add a border to a control class by using the

SWT.BORDER constant.

SWT style constant

It is required to specify a style constant (style bit). If you do not know which constant to use or if you do not

want to specify it, you can use SWT.NULL.

8.2.1. Buttons

A button can have different styles. The style of a button depends on its defined style bit. A list

of buttons and their style constants is shown in Table 4.

Table 4. SWT Button style bit constants and examples

Constants Example Description

SWT.ARROW

A button to show

popup menus etc.

Direction of the arrow

is determined by the

alignment constants.

SWT.CHECK Check boxes can have

images as well.

SWT.PUSH

A push button.

SWT.RADIO Radio buttons can be

used in a group.

SWT.TOGGLE

Like SWT.PUSH, but it

remains pressed until a

second click.

pollosky.it 2009

10

8.2.2. Slider, Scale, and ProgressBar widgets

Scale represents a range of selectable continues values. The range can be specified by the

setMinimum() and setMaximum() methods of the Scale class. You can get the selection value

by using the getSelection() method. A scale can only have one selected value at a given time.

That is to say, it is not possible to have multiple selections.

Figure 6. Slider and Scale widgets inside a Group.

Depending on the parameters passed to the constractor, it is possible to create different scale

and slider widgets. The slider and scale constants are shown in Table 5.

Table 5. SWT slider & scale style bar constants

SWT.HORIZONTAL

SWT.VERTICAL

Shows horizontal or vertical

widget

Optionally, you can use the SWT.BORDER constant to create a border around a scale widget.

This constant has no effect on the slider widget.

 Source 4. Slider widget example

 final Slider slider =

 new Slider(shell,SWT.VERTICAL);

 slider.setMinimum(0);

 slider.setMaximum(100);

 slider.setIncrement(5);

 slider.setPageIncrement(10);

 slider.setSelection(25);

 slider.addSelectionListener(

 new SelectionAdapter()

 {

 public void

widgetSelected(SelectionEvent e)

 {

System.out.println("Selection:"+

slider.getSelection());

 }

 }

);

The ProgressBar widget is similar to the Slider and Scale widgets, but it is not selectable. It

shows the progress of a task. You can use the SWT.SMOOTH and SWT.INTERMINATE constants

with the ProgressBar widget.

pollosky.it 2009

11

8.2.3. Text widget

A Text widget can be used to show or to edit text. Alternatively, you can use a StyledText

widget to display the text by using a different font and color. The StyledText widget allows you

to set the foreground, background color, and font for a given range within a text block.

Figure 7. Text widget.

It is possible to create a Text widget with the constants shown in Table 6. A Text widget is a

scrollable widget. Therefore, the SWT.H_SCROLL and SWT.V_SCROLL constants can be used to

add scroll bars to a Text widget.

Table 6. SWT Text style bit constants

SWT.MULTI

SWT.SINGLE

Shows a single line or multi line

widget

SWT.READ_ONLY Creates a read-only widget

SWT.WRAP Wraps the text

Source 5 is a simple Text widget usage example.

Source 5. Text widget example

 Text text =

 new Text(shell, SWT.MULTI|SWT.WRAP);

8.2.4. List widget

A List widget can be used to display a list of selectable string values. In the case of a selection,

the List object sends a notification event to its listeners. The type of a selection can be single

or multiple selections. The type of the selection is determined by the SWT.SINGLE or

SWT.MULTI constants. The List widget is a scrollable widget. Therefore, the SWT.H_SCROLL

and SWT.V_SCROLL constants can be used to add scroll bars to a Text widget.

Figure 8. List widget.

pollosky.it 2009

12

The following code snippet shows a simple List widget example.

Source 6. List example

 final List list = new

List(shell,SWT.MULTI);

 for (int i = 1; i < 11; i++)

 {

 list.add(i+".)www.korayguclu.de");

 }

 list.addSelectionListener(

 new SelectionAdapter()

 {

 public void

widgetSelected(SelectionEvent e)

 {

 List list = (List)

e.getSource();

 String[] str =

list.getSelection();

 for (int i = 0; i <

str.length; i++)

 {

System.out.println("Selection:

"+str[i]);

 }

 }

 }

);

8.2.5. Sash widget

A Sash widget can be used to display composite widgets in resizable areas. The following

figure shows a Sash widget example.

Figure 9. Sash widget.

A basic sash example can be seen below.

Source 7. Sash example

 Button button = new Button(shell,SWT.PUSH);

 Sash sash = new Sash(shell, SWT.VERTICAL);

 Button button1 = new Button(shell,SWT.PUSH);

pollosky.it 2009

13

8.3. Composite Widgets

Composite widgets can contain other composite widgets. The Composite class is the parent

class of the composite widgets.

Figure 10. Composite can contain other composite classes.

Composite classes can contain other composite classes. This containment is built up by using

the constructor of a composite widget class. In contrast to Swing, there is no add() method;

instead, you must use constructors to build up a containment structure.

As can be seen from Figure 10, the Shell class is also a composite class. That is to say, the

Shell object can contain other composite classes.

Composite widgets are Scrollable, which means that it is possible to add scrolls to the

composite widgets by using the SWT.H_SCROLL and SWT.V_SCROLL constants.

8.3.1. Table widget

A Table widget can display a set of String items or Images. In contrast to other composite

widgets, it is not possible to add composite controls to the table widget. A sub component of a

table widget must be of the TableItem type.

Figure 11. Table widget.

The constants in Table 7 can be used with the table widget.

Table 7. SWT Table style bit constants

SWT.MULTI

SWT.SINGLE

Enables a single or multi

selection

SWT.FULL_SELECTION Enables full row selection

SWT.CHECK
Displays a check box at the

beginning of each row

pollosky.it 2009

14

The code snippet in Source 8 shows a table widget usage containing two columns.

Source 8. Table widget example

 final Table table =

 new Table(shell,SWT.SINGLE);

 TableColumn col1 =

 new TableColumn(table,SWT.LEFT);

 col1.setText("Coloumn 1");

 col1.setWidth(80);

 TableColumn col2 =

 new TableColumn(table,SWT.LEFT);

 col2.setText("Coloumn 2");

 col2.setWidth(80);

 TableItem item1 = new TableItem(table,0);

 item1.setText(new String[]{"a","b"});

 TableItem item2 = new TableItem(table,0);

 item2.setText(new String[]{"a","b"});

 table.setHeaderVisible(true);

 table.setLinesVisible(true);

8.3.2. Combo widget

A Combo widget allows users to select a value from a list of values or optionally enter a new

value. The combo widget is similar to the List widget, but it uses a limited space.

Although the combo widget is a composite, it does not make sense to add child elements to it.

Its elements must be of the String type. An element to a combo widget can be added by using

the add(String element) method defined in the combo class.

Figure 12. Combo boxes in different styles.

The following SWT constants can be used with the Combo widget.

Table 8. SWT Combo style bit constants

SWT.DROP_DOWN Drop-down combo box

SWT.READ_ONLY Read-only combo box

SWT.SIMPLE Simple combo box (not drop-

down combo box). See Figure

11.

pollosky.it 2009

15

The following example shows a Combo widget's usage.

Source 9. Combo example

 final Combo combo =

 new Combo(shell,SWT.DROP_DOWN);

 for (int i = 1; i < 11; i++)

 {

 combo.add(i+".) element ");

 }

 combo.setText("Text");

 combo.addSelectionListener(

 new SelectionAdapter()

 {

 public void widgetSelected(SelectionEvent e)

 {

 System.out.println("Selection:"+

 combo.getText());

 }

 }

);

8.3.3. Tree widget

A Tree widget represents a selectable hierarchy of items in a tree. Altough the Three class is a

composite, it is not allowed to add composite classes to the Three class. Sub items of a Tree

class must be of the ThreeItem type.

Figure 13. Tree widgets in different styles.

The following table shows a list of Tree widget constants.

Table 9. SWT Combo style bit constants

SWT.SINGLE

SWT.MULTI

Allows single or multiple

selections

SWT.CHECK shows a check box at the begining

of each node

pollosky.it 2009

16

A simple Tree widget example is shown below.

Source 10. Tree example

 final Tree tree =

 new Tree(shell,SWT.SINGLE);

 for (int i = 1; i < 11; i++)

 {

 final TreeItem item1 =

 new TreeItem(tree,SWT.NULL);

 item1.setText("node "+i);

 for (int j = 1; j < 6; j++)

 {

 final TreeItem item11 =

 new TreeItem(item1,SWT.NULL);

 item11.setText("node "+i+"."+j);

 }

 }

 tree.addSelectionListener(

 new SelectionAdapter()

 {

 public void widgetSelected(SelectionEvent e)

 {

 System.out.println("Selection:"+

 tree.getSelection()[0]);

 }

 }

);

8.3.4. TabFolder

The TabFolder widget allows users to select a page from a set of pages. Although it is a

composite, it is not allowed to add composite widgets. A widget that is to be added to a

TabFolder must of the TabItem type. The content of a tab can be set by using the TabItem's

setControl(Control control) method.

Figure 14. TabFolder widget

A simple TabFolder example is shown below.

Source 11. TabFolder example

 final TabFolder tabFolder = new TabFolder(shell, SWT.BORDER);

 for (int i=1; i<5; i++){

 // create a TabItem

 TabItem item = new TabItem(tabFolder, SWT.NULL);

 item.setText("TabItem " + i);

 // create a control

 Label label = new Label(tabFolder, SWT.BORDER);

 label.setText("Page " + i);

 // add a control to the TabItem

 item.setControl(label);

 }

pollosky.it 2009

17

8.3.5. CoolBar widget

The CoolBar widget provides an area in which you add items on a dynamically positionable

space.You can add one or more ToolBar widgets to a CoolBar. A CoolBar can contain one or

more CoolItems. Although CoolBar is a composite widget, it is not allowed to add other

composite classes. Sub elements of a CoolBar must be of the CoolItem type.

Figure 15. Coolbar widget

The following example shows a CoolBar widget's usage.

Source 12. CoolBar example

 CoolBar coolBar =

 new CoolBar(shell, SWT.BORDER);

 coolBar.setLayoutData(

 new FillLayout());

 // create a tool bar which it

 // the control of the coolItem

 for (int k = 1; k <3; k++)

 {

 ToolBar toolBar =

 new ToolBar(coolBar, SWT.FLAT);

 for (int i = 1; i < 5; i++)

 {

 ToolItem item =

 new ToolItem(toolBar, SWT.NULL);

 item.setText("B"+k+"."+i);

 }

 // Add a coolItem to a coolBar

 CoolItem coolItem =

 new CoolItem(coolBar, SWT.NULL);

 // set the control of the coolItem

 coolItem.setControl(toolBar);

 // You have to specify the size

 Point size =

 toolBar.computeSize(SWT.DEFAULT,

 SWT.DEFAULT);

 Point coolSize =

 coolItem.computeSize (size.x, size.y);

 coolItem.setSize(coolSize);

 }

pollosky.it 2009

18

8.4. A summary of controls having items

Some controls accept sub components as items. For example, a Composite component accepts

composite components. Some components need only items. Such components are listed in

Table 10.

Table 10. Components having items

Widget Item Description

CoolBar CoolItem Items are selectable,

dynamically

positionable areas of a

CoolBar

Menu MenuItem Items are selections

under a menu

TabFolder TabItem Items are Tabs in a

TabFolder

Table TableItem

TableColumn

Items are Rows in a

table

ToolBar ToolItem Items are Buttons on

the tool bar

Tree TreeItem Items are nodes in a

tree

Conclusion

SWT is the core of the Eclipse user interface. The Eclipse platform is based on the SWT library.

To extend your SWT knowledge, you can download SWT examples from the SWT Web site.

Resources

Links

• A First Look at Eclipse Plug-In Programming, by Koray Guclu.

• Eclipse uses the Common Public License: http://www.eclipse.org/legal/cpl-v10.html

• Eclipse download site: http://www.eclipse.org/downloads/

• Articles published on the Eclipse Web site: http://www.eclipse.org/arcticles/

• Java download Web site: http://java.sun.com/downloads/index.html

• Eclipse user interface guidelines: http://www.eclipse.org/articles/Article-UI-

Guidelines/Index.html

• Quality Eclipse: http://www.qualityeclipse.org/

• SWT Standard Widget Toolkit: http://www.eclipse.org/articles/Article-SWT-Design-

1/SWT-Design-1.html

pollosky.it 2009

19

Books

• Eric Clayberg, Dan Rubel, 2004. Eclipse: Building Commercial-Quality Plug-Ins, Pearson

Education; June 25, 2004.

• David Gallardo, Ed Burnett, Robert McGovern, 2003. Eclipse in Action: A Guide for Java

Developers, Manning Publications.

• Sherry Shavor, Jim D'Anjou, Scott Fairbrother (2003) The Java Developer's Guide to

Eclipse, Addison-Wesley Professional.

Constructing SWT Layouts

By Koray Guclu

"I saw the angel in the marble and carved until I set him free."—Michelangelo

Learning layout managers takes time, but once you get accustomed to using them, you can

create good looking user interfaces. You also can use GUI builders to create the GUI easily. I

use SWT (Standard Widget Toolkit), a cross platform GUI developed by IBM and part of the

Eclipse environment. If you are not familiar with this tool please see my earlier article on

programming with SWT.

I prefer to use the GUI builders to create an initial look and I configure the UI manually. If you

do not have a good understanding of the layout internals, you will limit yourself to the

capabilities of the GUI builder that you are using.

Layouts
A layout automatically controls the position and size of widgets inside a Composite. In SWT,

the size of a widget inside a composite is not automatically set. Each composite requires a

layout to show its children controls. If the layout is not set, SWT will not be able to set the size

and position of the controls inside a composite and our controls will not be visible. We have to

set a layout for each composite in order to display the children controls.

Layout Manager classes are inherited from an abstract Layout class. Some Layout Managers

allow us to set different properties for each control. Those layout classes have an addition

object which can be set separately for each control inside a composite. The Control class

provides a standard method, setLayoutData(Object obj), to set this addition parameter. You

have to set an appropriate layout data object for each control; otherwise, it throws a classcast

exception.

Figure 1. SWT Layout managers.

pollosky.it 2009

20

Layout classes have properties that affect all the components within a composite. Some layout

classes support layout data objects to set different properties for each control within a

composite. Layout properties can be set by using a layout's member variables. If you are

familiar with Swing, you would probably search for methods to set and get these member

variables. In SWT, this is different; you read and write to those variables directly.

You can use the following SWT application template to test the code snippets shown in this

article.

 Listing 1. SWT application template

import org.eclipse.swt.layout.RowLayout;

import org.eclipse.swt.widgets.Display;

import org.eclipse.swt.widgets.Shell;

public class SWTTemplate

{

 public static void main(String args[])

 {

 Display display = new Display();

 Shell shell = new Shell(display);

 // ------------------------

 // Your code comes to here.

 // ------------------------

 shell.pack();

 shell.open();

 while(!shell.isDisposed())

 {

 if(!display.readAndDispatch())

 display.sleep();

 }

 display.dispose();

 }

}

Running SWT applications

If you are new to SWT programming, you can read my previous article "SWT Programming with Eclipse"

from http://www.developer.com/java/other/article.php/3330861.

FillLayout
FillLayout is the simplest layout. If there is only one subcomponent, it fills the all available

parent area. If there are more than one component, it forces all components to be the same

size in a single row or a column. The width and hight of the subcomponents are determined by

the widest or the highest widget in a composite. There are no options available to control

either the spacing, margins, or wrapping.

The type variable specifies how controls will be positioned within the composite. The type

variable can be set to SWT.HORIZONTAL (the default) or SWT.VERTICAL to position the

controls either in a single row or a column. This variable is public; you can either directly set

the variable or pass the variable to the constructor.

 Listing 2. FillLayout example

 FillLayout fillLayout = new

FillLayout(SWT.HORIZONTAL);

 // or ..

 FillLayout fillLayout = new FillLayout();

 fillLayout.type = SWT.HORIZONTAL;

The FillLayout might be used in a task bar, in a tool bar, or in a group or composite having

only one child. Besides that, it might be used to stack the check boxes or radio

group.

 Listing 3. FillLayout example

 // ...

 FillLayout fillLayout = new

FillLayout(SWT.VERTICAL);

 shell.setLayout(fillLayout);

 for (int i = 0; i < 3; i++)

 {

 Button button =new Button(shell, SWT.PUSH);

 button.setText("A"+i);

 }

 // ...

The width and height of a control within a composite are determined by the parent composite.

Initially, the height of any control is equal to the highest, and the width of a control is equal to

the widest.

Table 1. FillLayout examples

Type Before&After Resize

SWT.HORIZONTAL

SWT.VERTICAL

Advantages:

• Simplest layout

• Positions the components in rows or columns

p

21

FillLayout fillLayout = new

FillLayout(SWT.HORIZONTAL);

FillLayout fillLayout = new FillLayout();

fillLayout.type = SWT.HORIZONTAL;

The FillLayout might be used in a task bar, in a tool bar, or in a group or composite having

only one child. Besides that, it might be used to stack the check boxes or radio

FillLayout fillLayout = new

shell.setLayout(fillLayout);

for (int i = 0; i < 3; i++)

Button button =new Button(shell, SWT.PUSH);

The width and height of a control within a composite are determined by the parent composite.

Initially, the height of any control is equal to the highest, and the width of a control is equal to

Before&After Resize

Positions the components in rows or columns

pollosky.it 2009

The FillLayout might be used in a task bar, in a tool bar, or in a group or composite having

only one child. Besides that, it might be used to stack the check boxes or radio buttons in a

The width and height of a control within a composite are determined by the parent composite.

Initially, the height of any control is equal to the highest, and the width of a control is equal to

RowLayout
RowLayout is very similar to FillLayout. It positions the controls, similar to FillLayout, in rows

or columns. In addition to that, RowLayout provides configuration fields to control the position

of a control within a composite as seen in

Figure 2 shows a simple use of RowLayout. You can use the preceding code to create the

following example. All values are default; nothing is changed. As you can see, it wrapped

row automatically when there is not enough space left in the row.

Figure 2. RowLayout Example with default properties

If you do not want to make any configuration changes, you can use the default values by

creating a RowLayout using its default

The configurable properties of RowLayout are listed in the following table. The variables are

member fields in RowLayout. You can access them directly.

Table 2. RowLayout properties

Variable Default Description

justify false Spreads the

available space within a

composite.

marginBottom

marginLeft

marginRight

marginTop

spacing

3 Number of pixels around

widgets. Spacing represents

number of pixels between

widgets.

pack true Forces all components to be

the same size

composite.

type SWT.HORIZONTAL Positions the widgets in rows

or columns.

wrap true Wraps the widgets in

row/column if there is not

enough space on the

row/column

p

22

RowLayout is very similar to FillLayout. It positions the controls, similar to FillLayout, in rows

or columns. In addition to that, RowLayout provides configuration fields to control the position

of a control within a composite as seen in Listing 4.

Figure 2 shows a simple use of RowLayout. You can use the preceding code to create the

following example. All values are default; nothing is changed. As you can see, it wrapped

row automatically when there is not enough space left in the row.

RowLayout Example with default properties

If you do not want to make any configuration changes, you can use the default values by

creating a RowLayout using its default constructor.

The configurable properties of RowLayout are listed in the following table. The variables are

member fields in RowLayout. You can access them directly.

Description

Spreads the widgets across the

available space within a

composite.

Number of pixels around

widgets. Spacing represents

number of pixels between

widgets.

Forces all components to be

the same size within a

composite.

Positions the widgets in rows

or columns.

Wraps the widgets in

row/column if there is not

enough space on the

row/column

pollosky.it 2009

RowLayout is very similar to FillLayout. It positions the controls, similar to FillLayout, in rows

or columns. In addition to that, RowLayout provides configuration fields to control the position

Figure 2 shows a simple use of RowLayout. You can use the preceding code to create the

following example. All values are default; nothing is changed. As you can see, it wrapped the

If you do not want to make any configuration changes, you can use the default values by

The configurable properties of RowLayout are listed in the following table. The variables are

Figure 6, shown below, shows the fields that do not depend on the size of the composite.

Figures 3, 4, and 5 show the properties that depend on the size of the composite.

Figure 3 shows the effect of the wrap property. The wrap is set to false and shell window is

resized. As it is shown, there is no wrapping after resize when the wrap is set to false. In

contrast to Figure 2 above, the controls on the composite do not wrap.

Figure 3. RowLayout.wrap=false

The pack property forces all components to be the same size within the composite. This

property sets the width of the controls to the widest and height of the components to the

highest. Figure 4 shows both cases.

Figure 4. RowLayout.pack=true, false

The justify property spreads the widgets across the available space within a composite.

5 shows the effect of the justify property.

Figure 5. RowLayout.justify=false, true

Figure 6 shows some properties listed in

Figure 6. RowLayout properties

RowLayout is similar to FillLayout, but has the following key advantages:

• If the number of widgets do not fit in a row, it wraps the widgets.

• It provides configurable margins.

• It provides configurable spaces.

• It provides RowData object.

p

23

, shown below, shows the fields that do not depend on the size of the composite.

show the properties that depend on the size of the composite.

shows the effect of the wrap property. The wrap is set to false and shell window is

resized. As it is shown, there is no wrapping after resize when the wrap is set to false. In

above, the controls on the composite do not wrap.

RowLayout.wrap=false

The pack property forces all components to be the same size within the composite. This

property sets the width of the controls to the widest and height of the components to the

shows both cases.

RowLayout.pack=true, false

The justify property spreads the widgets across the available space within a composite.

shows the effect of the justify property.

RowLayout.justify=false, true

shows some properties listed in Table 2.

RowLayout properties

RowLayout is similar to FillLayout, but has the following key advantages:

If the number of widgets do not fit in a row, it wraps the widgets.

It provides configurable margins.

It provides configurable spaces.

provides RowData object.

pollosky.it 2009

, shown below, shows the fields that do not depend on the size of the composite.

show the properties that depend on the size of the composite.

shows the effect of the wrap property. The wrap is set to false and shell window is

resized. As it is shown, there is no wrapping after resize when the wrap is set to false. In

The pack property forces all components to be the same size within the composite. This

property sets the width of the controls to the widest and height of the components to the

The justify property spreads the widgets across the available space within a composite. Figure

pollosky.it 2009

24

3.1. RowData

Each widget can have different RowData objects in RowLayout. You can specify different a

height and width for each widget in the composite having RowLayout.

Table 3. RowData properties

Variable Default Description

height

width
0 Height and width of the widget

RowData only has two properties. There are only the width and height properties that we can

use to set the width and height of each widget. If you want to change the size of a widget, you

should create a RowLayout for the composite and you should create a RowData object for each

widget. You can specify different RowData objects for each widget.

 Listing 5. RowData Example

 // ...

 RowLayout rowLayout = new RowLayout();

 shell.setLayout(rowLayout);

 for (int i = 1; i < 6; i++)

 {

 Button button = new Button(shell,

SWT.PUSH);

 button.setText("A" + i);

 RowData rowData = new

RowData(i*15,i*25);

 button.setLayoutData(rowData);

 }

 // ...

Listing 5 shows a simple RowData example. This code will generate buttons having different

heights and widths.

Figure 7. RowData Example

GridLayout
GridLayout is the most useful and flexible layout.The GridLayout lays out the widgets in grids.

Configureable properties of the GridLayout are listed in

The properties listed in Table 4 affect all the layout behavior. The GridLayout provides a data

object as well. If you need to set a different property for a cell, you need to create a GridData

object and set this as the control's layout data object.

The makeColumndEqualWidth property

shown in Figure 8. This property makes the columns the same size. If you want the widgets

also to be the same size, you should need to use GridData object's horizontal/vertical

alignment properties, as shown in

Figure 8. GridLayout.makeColumnnsEqualWidth=false,true

The numColumns field must be set. This field specifies the number of columns in the

GridLayout. If the number of components added is bigger than the number of the components

in a composite, GridLayout adds the component to a new row.

For example, five components added to a GridLayout in

only has four columns. For that reason, button A5 will be added to a the second row.

Figure 9 shows the location of the properties on the UI that are listed in

Figure 9. GridLayout Example

Initially, each column can have a different width. If you want to force all columns to be the

same size, you must set the makeColumnsEqualWidth

p

25

GridLayout is the most useful and flexible layout.The GridLayout lays out the widgets in grids.

Configureable properties of the GridLayout are listed in Table 4.

4 affect all the layout behavior. The GridLayout provides a data

object as well. If you need to set a different property for a cell, you need to create a GridData

object and set this as the control's layout data object.

The makeColumndEqualWidth property in Table 4 makes all the controls the same size, as

. This property makes the columns the same size. If you want the widgets

also to be the same size, you should need to use GridData object's horizontal/vertical

own in Figure 12.

GridLayout.makeColumnnsEqualWidth=false,true

The numColumns field must be set. This field specifies the number of columns in the

GridLayout. If the number of components added is bigger than the number of the components

composite, GridLayout adds the component to a new row.

For example, five components added to a GridLayout in Figure 9. The GridLayout in

only has four columns. For that reason, button A5 will be added to a the second row.

shows the location of the properties on the UI that are listed in Table 4

Initially, each column can have a different width. If you want to force all columns to be the

makeColumnsEqualWidth variable to true, as shown in

pollosky.it 2009

GridLayout is the most useful and flexible layout.The GridLayout lays out the widgets in grids.

4 affect all the layout behavior. The GridLayout provides a data

object as well. If you need to set a different property for a cell, you need to create a GridData

makes all the controls the same size, as

. This property makes the columns the same size. If you want the widgets

also to be the same size, you should need to use GridData object's horizontal/vertical

The numColumns field must be set. This field specifies the number of columns in the

GridLayout. If the number of components added is bigger than the number of the components

. The GridLayout in Figure 9

only has four columns. For that reason, button A5 will be added to a the second row.

Table 4.

Initially, each column can have a different width. If you want to force all columns to be the

able to true, as shown in Figure 8.

 Listing 6. GridLayout example

 // ...

 GridLayout gridLayout = new GridLayout();

 shell.setLayout(gridLayout);

 gridLayout.numColumns = 5;

 for (int i = 1; i <= 7; i++)

 {

 Button button = new Button(shell, SWT.PUSH);

 button.setText("A" + i);

 }

 // ...

The preceding code snippet creates a new grid layout and sets the number of columns to 5.

Afterwards, seven components are added to the composite. The figure below

position of the widgets.

Figure 10. GridLayout Example using default properties

Advantages:

• It is the most powerful layout

• It puts widgets in rows and columns

• It provides configurable margins

• It provides configurable spaces

• It provides a GridData object

GridData

Each widget within a composite having GridLayout can have GridData set a different property

for each widget. Configureable properties of the GridData object are listed in

Table 5. GridData properties

Variable Default

grabExcessHorizontalSpace

grabExcessVerticalSpace false

heightHint

widthHint
SWT.DEFAULT (indicates that no

minimum width is specified.)

p

26

GridLayout gridLayout = new GridLayout();

shell.setLayout(gridLayout);

gridLayout.numColumns = 5;

for (int i = 1; i <= 7; i++)

Button button = new Button(shell, SWT.PUSH);

button.setText("A" + i);

The preceding code snippet creates a new grid layout and sets the number of columns to 5.

Afterwards, seven components are added to the composite. The figure below

GridLayout Example using default properties

It is the most powerful layout

It puts widgets in rows and columns

It provides configurable margins

It provides configurable spaces

dData object

Each widget within a composite having GridLayout can have GridData set a different property

for each widget. Configureable properties of the GridData object are listed in

Default Description

If true, after resize, the

widget will grow enough

to fit the remaining

space.

SWT.DEFAULT (indicates that no

minimum width is specified.)

Specifies a minimum

width/height for the

column.

pollosky.it 2009

The preceding code snippet creates a new grid layout and sets the number of columns to 5.

Afterwards, seven components are added to the composite. The figure below shows the

Each widget within a composite having GridLayout can have GridData set a different property

for each widget. Configureable properties of the GridData object are listed in Table 5.

If true, after resize, the

widget will grow enough

horizontalAlignment

verticalAlignment
GridData.BEGINNING(possible

values are BEGINNING, CENTER,

END, FILL)

horizontalIndent 0

horizontalSpan

verticalSpan
1

The effect of the first property listed in

grabExcessHorizontalSpace (or grabExcessVerticalSpace) property can be hard to understand

at first. For that reason, the area that is affected by this property is highlighted in the picture

below. As you can see, if this property

possible. If you want a widget to fill the horizontal space, you need to use this in combination

with the alignment property shown in

Figure 11. GridData.grabExcessHorizontalSpace=false,true

The horizontalAlignment (or verticalAlignment) property sets the alignment of the control. You

can use this in combination with the grabExcessHorizontalSpace property.

Figure 12. GridData.horizontalAlignmen

GridData.END, GridData.FILL

The effect of the horizontalSpace is shown below.

Figure 13. GridData.horizontalSpan=1,2

p

27

GridData.BEGINNING(possible

values are BEGINNING, CENTER,

END, FILL)

Specifies how controls

will be positioned

horizontally/vertically

within a cell.

Specifies the number of

pixels of indentation that

will be placed along the

left side of the cell.

Specifies the number of

column/row cells that

the control will take up.

The effect of the first property listed in Table 5 is illustrated below. The

grabExcessHorizontalSpace (or grabExcessVerticalSpace) property can be hard to understand

at first. For that reason, the area that is affected by this property is highlighted in the picture

below. As you can see, if this property is set to true, the width of the grids will be as large as

possible. If you want a widget to fill the horizontal space, you need to use this in combination

with the alignment property shown in Figure 12.

GridData.grabExcessHorizontalSpace=false,true

The horizontalAlignment (or verticalAlignment) property sets the alignment of the control. You

can use this in combination with the grabExcessHorizontalSpace property.

GridData.horizontalAlignment = GridData.BEGINNING, GridData.CENTER,

The effect of the horizontalSpace is shown below.

GridData.horizontalSpan=1,2

pollosky.it 2009

Specifies how controls

er of

pixels of indentation that

will be placed along the

Specifies the number of

column/row cells that

the control will take up.

grabExcessHorizontalSpace (or grabExcessVerticalSpace) property can be hard to understand

at first. For that reason, the area that is affected by this property is highlighted in the picture

is set to true, the width of the grids will be as large as

possible. If you want a widget to fill the horizontal space, you need to use this in combination

The horizontalAlignment (or verticalAlignment) property sets the alignment of the control. You

t = GridData.BEGINNING, GridData.CENTER,

FormLayout
FormLayout is a very flexible layout, like GridLayout, but it works in a

way. In GridLayout, you have to plan everything ahead and build your user interface. In

contrast to GridLayout, FormLayout is independent from the complete layout. The position and

size of the components depend on one Control.

The location of the properties listed in

FormData and FormAttachment

Each widget within a composite having FormLayout can have FormData to set the

layout properties for a widget.

The FormData object has the properties listed in

A FormData object can have 0 or 4 FormAttachment objects. The form atta

controls (see Figure 15). The FormAttachment object can have the properties listed in

Figure 14. FormLayout Example

The above example shows a form layout created by using the code snippet below.

 Source 7. FormLayout example

 FormLayout layout= new FormLayout();

 shell.setLayout (layout);

 Button button1 = new Button(shell, SWT.PUSH);

 Button button2 = new Button(shell, SWT.PUSH);

 Button button3 = new Button(shell, SWT.PUSH);

 button1.setText("B1");

 button2.setText("B2");

 button3.setText("B3");

 FormData data1 = new FormData();

 data1 .left = new FormAttachment(0,5);

 data1 .right = new FormAttachment(25,0);

 button1.setLayoutData(data1);

 FormData data2 = new FormData();

 data2.left = new FormAttachment(button1,5);

 data2.right = new FormAttachment(90,

 button2.setLayoutData(data2);

 FormData data3 = new FormData();

 data3.top = new FormAttachment(button2,5);

 data3.bottom = new FormAttachment(100,

 data3.right = new FormAttachment(100,

 data3.left = new FormAttachment(25,5);

 button3.setLayoutData(data3);

p

28

FormLayout is a very flexible layout, like GridLayout, but it works in a completely different

way. In GridLayout, you have to plan everything ahead and build your user interface. In

contrast to GridLayout, FormLayout is independent from the complete layout. The position and

size of the components depend on one Control.

tion of the properties listed in Table 6 can be seen in Figure 9.

FormData and FormAttachment

Each widget within a composite having FormLayout can have FormData to set the

The FormData object has the properties listed in Table 7.

A FormData object can have 0 or 4 FormAttachment objects. The form atta

). The FormAttachment object can have the properties listed in

FormLayout Example

form layout created by using the code snippet below.

FormLayout layout= new FormLayout();

shell.setLayout (layout);

Button button1 = new Button(shell, SWT.PUSH);

Button button2 = new Button(shell, SWT.PUSH);

Button button3 = new Button(shell, SWT.PUSH);

FormData data1 = new FormData();

data1 .left = new FormAttachment(0,5);

data1 .right = new FormAttachment(25,0);

.setLayoutData(data1);

FormData data2 = new FormData();

data2.left = new FormAttachment(button1,5);

data2.right = new FormAttachment(90,-5);

button2.setLayoutData(data2);

FormData data3 = new FormData();

data3.top = new FormAttachment(button2,5);

data3.bottom = new FormAttachment(100,-5);

data3.right = new FormAttachment(100,-5);

data3.left = new FormAttachment(25,5);

button3.setLayoutData(data3);

pollosky.it 2009

completely different

way. In GridLayout, you have to plan everything ahead and build your user interface. In

contrast to GridLayout, FormLayout is independent from the complete layout. The position and

Each widget within a composite having FormLayout can have FormData to set the different

A FormData object can have 0 or 4 FormAttachment objects. The form attachment can have

). The FormAttachment object can have the properties listed in Table 8.

form layout created by using the code snippet below.

Figure 15 shows the location of the properties and location of the buttons.

Figure 15. FormLayout Example

StackLayout
StackLayout is different from the other layout classes. StackLayout displays only one Control

at a time; however, other layout classes attempt t

StackLayout is used in property pages, wizards, and so forth.

The StackLayout has the properties listed in

Figure 16. StackLayout Example

Figure 16 shows a simple stack layout example. We click on the Show Next Group object each

time to change the top control.

Figure 17. StackLayout Example

p

29

shows the location of the properties and location of the buttons.

FormLayout Example

StackLayout is different from the other layout classes. StackLayout displays only one Control

at a time; however, other layout classes attempt to display many Controls at a time.

StackLayout is used in property pages, wizards, and so forth.

The StackLayout has the properties listed in Table 9.

StackLayout Example

shows a simple stack layout example. We click on the Show Next Group object each

StackLayout Example

pollosky.it 2009

shows the location of the properties and location of the buttons.

StackLayout is different from the other layout classes. StackLayout displays only one Control

o display many Controls at a time.

shows a simple stack layout example. We click on the Show Next Group object each

pollosky.it 2009

30

Figure 17 shows an example of StackLayout. A stack of controls exists. It is allowed to display

only one control at a time. The highlighted picture on the right shows the topControl (active)

control.

 Source 8. StackLayout example

 // ...

 shell.setLayout(new GridLayout());

 final Composite parent = new Composite(shell,

SWT.NONE);

 parent.setLayoutData(new GridData());

 final StackLayout layout = new StackLayout();

 parent.setLayout(layout);

final Group[] group = new Group[3];

 for (int k = 0; k < group.length; k++)

 {

 group[k] = new Group(parent, SWT.NONE);

 group[k].setText("Group " + (k + 1));

 GridLayout gridLayout = new GridLayout();

 gridLayout.numColumns = 4;

 group[k].setLayout(gridLayout);

 Character character = new Character((char) ('A' +

k));

 for (int i = 10; i < 20; i++)

 {

 Button bArray = new Button(group[k], SWT.PUSH);

 bArray.setText(character + "." + i);

 }

 }

layout.topControl = group[0];

 Button b = new Button(shell, SWT.PUSH);

 b.setText("Show Next Group");

 final int[] index = new int[1];

 b.addListener(SWT.Selection, new Listener()

 {

 public void handleEvent(Event e)

 {

 index[0] = (index[0] + 1) % 3;

 layout.topControl = group[index[0]];

 parent.layout();

 }

 });

 // ...

pollosky.it 2009

31

We have three groups and we add button controls to those groups. Afterwards, we need to set

the initial topControl. We create an action listener when the button is clicked. The action

listener changes the top control and calls the layout() method of the parent control.

This step is very important: If you do not call the layout method of the parent control, you

won't be able to see any change.

Resources

Links

• SWT Programming with Eclipse, by Koray Güclü,

http://www.developer.com/java/other/article.php/3330861

• A First Look at Eclipse Plug-In Programming by Koray Güclü,

http://www.developer.com/java/other/article.php/3316241.

• Understanding Layouts in SWT, by Carolyn MacLeod.

• Eclipse User Interface Guidelines, by Nick Edgar, Kevin Haaland, Jin Li, and Kimberley

Peter.

• Java Tutorial - Creating a GUI with JFC/Swing.

• Eclipse uses the Common Public License.

• Eclipse download site: http://www.eclipse.org/downloads/

• Eclipse Java documentation.
• Java download Web site: http://java.sun.com/downloads/

Books

• David Gallardo, Ed Burnett, Robert McGovern (2003) Eclipse in Action: A Guide for Java

Developers, Manning Publications.

• Sherry Shavor, Jim D'Anjou, Scott Fairbrother (2003) The Java Developer's Guide to

Eclipse, Addison-Wesley Professional

About the Author

Koray Güclü

He is working as a freelance author and software architect. He is currently

finishing his book on Software Architectures and Design Patterns. His main

interest areas are Software Architectures, Data Warehouses, and Database

Modeling.

www.korayguclu.de

pollosky.it 2009

32

Swing and SWT: A Tale of Two Java GUI Libraries

By Mauro Marinilli

In this article, we will talk about Java J2SE graphical user interface (GUI) libraries. We will

adopt a programmer's viewpoint in our discussion. We assume the reader is familiar with the

basics of the Swing library and wants to explore the SWT technology.

We will discuss two Java GUI libraries:

• Swing—The reference GUI toolkit for J2SE.

• SWT—This library has been developed by IBM as a part of the Eclipse platform.

Eclipse is an open-source, IBM-sponsored, fully extensible IDE, built using Java and SWT. SWT

originated as Eclipse's GUI library, but it can be used outside it as a an alternative GUI library

to both Sun's AWT and Swing.

In the following section, we will introduce the basics of SWT. We will assume the reader is

familiar with Swing. Finally, we compare SWT and Swing.

SWT
SWT (Standard Widget Toolkit) is a graphics library and a widget toolkit integrated with the

native window system (especially with Windows but Linux and Solaris are supported as well).

Despite the tight integration with the native target platform, SWT is an OS-independent API.

SWT can be seen as a thin wrapper over the native code GUI of the host operating system.

At a higher level of abstraction, also a part of the Eclipse platform, lies JFace. This is a GUI

library, implemented using SWT, that simplifies common GUI programming tasks. JFace is

independent of the given window system, in both its API and implementation, and is designed

to work with SWT, without hiding it. For brevity, we will discuss only SWT here.

Introduction

The design strategy of SWT was focused on building a simple, essential library that would

produce GUI applications closely coupled to the native environment. SWT delegates to native

widgets for common components (such as labels, lists, tables, and so on) as AWT does, while

emulating in Java more sophisticated components (for example, toolbars are emulated when

running on Motif) similarly to Swing's strategy.

SWT has been designed to be as inexpensive as possible. This means (among the other things)

that it is native-oriented. Anyway, it differs from AWT in a number of details. SWT provides

different Java implementations for each platform, and each of these implementations calls

natively (through the Java Native Interface, JNI) the underlying native implementation. The

old AWT is different in that all platform-dependent details are hidden in C (native) code and

the Java implementation is the same for all the platforms.

Resources

An important difference from normal Java programming is the way OS-dependent objects are

managed in SWT. Swing emulates a large part of such objects (such as widgets, for instance)

in Java, leaving the disposal job to the JRE garbage collector. This saves a lot of complexity for

the programmer but this lack of control can lead to some unexpected issues, especially with

cross-platform development.

SWT designers chose a different approach, obliging the developer to explicitly dispose of OS-

dependent objects in the application code. SWT has been designed with efficiency in mind, so

handling explicitly OS resources becomes an occasion to promote efficient programming and

not just a necessity. Resource disposal is needed to free the OS resources used by the SWT

application. Such OS resources need to be explicitly de-allocated by invoking the dispose

method.

In practice, disposing of objects is a delicate business and it can lead to unpredictable results

whenever another object tries to access an already disposed item.

pollosky.it 2009

33

The Basic Structure of an SWT Program

As already said, an SWT program relies upon the native platform resources (wrapped by the

Display class, as we will see later on) both in terms of allocated resources (such as colors,

images, and so on) and as regards the event mechanism. As regards event handling, in SWT

there is only one thread that is allowed to handle native user interface events.

We now see the basic structure of an SWT program. This will help us understand SWT's basic

architecture.

There are two basic classes used in any SWT application, the Display and Shell classes.

Instances of the Display class are responsible for managing the connections between SWT

and the underlying operating system, enforcing the SWT models (for colors or images, for

example). The Shell class instead represents windows managed by the platform-dependent

desktop manager.

Typically, an SWT program will first create a local resources manager (an instance of the

Display class) and attach all the needed widgets to one or more Shell objects. Listing 1

shows this typical mechanism.

Listing 1: A snippet of code showing the use of the Display and Shell classes.

00: Display display = new Display();

01: Shell shell = new Shell(display);

02: //GUI code here

03: shell.open();

04: while (!shell.isDisposed()) {

05: if (!display.readAndDispatch())

06: display.sleep();

07: }

08: display.dispose();

09: }

10: }

To fully understand the code in Listing 1, one should understand the readAndDispatch method

of the Display class. Such a method reads an event from the operating system's event queue,

dispatching it appropriately. It returns true if there is additional work to do, or false if the

caller can sleep until another event is placed on the event queue.

The loop at lines 4-9 in Listing 1 is typical of SWT applications. It takes care of forwarding all

underlying platform events to the SWT application until the shell is disposed and the program

can exit the event loop.

Basic Controls

Some of the basic components (or controls, as they are called in SWT) are the following:

• Button. This component is the well-known button component used in toolbars, forms,

and so forth.

• ComboBox. This widget is the well-known combo box component.

• Label. This component represents a (non-selectable) object that displays a string or an

image.

• List. This widget represents a basic list component.

• ProgressBar. It shows a progress indicator.

• Sash. It is the Swing equivalent of a JSplitPane. It is a widget that can be dragged to

resize two areas in a GUI.

pollosky.it 2009

34

• Scale. This component implements an editable GUI item representing a range of

continuous numeric values.

• Slider. This component represents an editable object that stands for a range of

discrete, numeric values.

• Table. This component represents a basic table.

• Text. This component represents a basic text area.

• Tree. This component represents a basic tree widget.

• StyledText. This component represents a text area with styled fonts and other

advanced attributes.

SWT vs. Swing
We conclude this article comparing these two technologies. Which is better, and when?

Swing provides a larger set of features, it is much more elegant, and gives an higher

abstraction level (that turns helpful when developing complex GUIs with custom components).

In general, SWT is easier to use at first, but when it comes to building complex GUIs, Swing

usually results are easier to use and more flexible. In Table 1, support for the main

components is shown for the three main GUI libraries.

Table 1: Comparing visual components

Component SWT Swing AWT

Button X X X

Advanced Button X X

Label X X X

List X X X

Progress Bar X X

Sash X X

Scale X X

Slider X X

Text Area X X X

Advanced Text Area X X

Tree X X

Menu X X

Tab Folder X X

Toolbar X X X

Spinner X X

Spinner X X

Table X X X

Advanced Table X X

pollosky.it 2009

35

At first, SWT may seem simpler to use than Swing because it spares developers from a lot of

sophisticated issues (such as the elaborated Swing class hierarchy, pluggable look and feel,

the Model-View-Controller approach, and so on). Anyway, one potential problem with SWT is in

the need for resource management. Swing (and AWT) follows the Java paradigm of automatic

resources disposal, while in SWT de-allocating native resources needs to be accomplished

explicitly by the programmer. Explicitly de-allocating the resources could be a step back in

development time (and costs) at least for the average Java developer. This is a mixed

blessing. It means more control (and more complexity) for the SWT developer instead of more

automation (and slowness) when using Swing.

Although SWT supports non-natively rendered widgets (similarly to Swing), the default widget

implementations are based on native peers (similarly to the old AWT). In addition, most of the

Eclipse peers do not allow for inheritance. (Obviously, if you're writing Eclipse plugins, you

have no choice but to use SWT.)

Recapping, whenever one needs a tight integration with the native platform, SWT can be a

plus. Similarly, if one wants to take advantage of the Java language but needs to deploy only

on Windows (or some of the few other supported platforms), SWT (and the Eclipse platform) is

a better choice than Swing. But, be careful about the hidden costs associated with learning to

use the Eclipse IDE and the SWT library. Also, the explicit de-allocation mechanism adopted in

SWT could be useful in some situations and uselessly complex in others. If you don't need

cross-platform development and your target OS is supported (Windows, for example), you

may consider SWT, especially if your customers have old, limited machines where Swing use

can be prohibitive. For all other scenarios, Swing provides the conservative choice.

Conclusions and References
In this article, we introduced SWT and compared it with Swing. My intent was to give a first

idea of this library and its main characteristics. We concluded contrasting briefly SWT against

Swing.

In the following are listed some (among the many) resources available for the interested

reader.

• http://www.eclipse.org/—The home page of the Eclipse project.

• http://gcc.gnu.org/java/—The home page of the GCJ project.

• http://www.java.sun.com/products/plugin/—The official Sun Web site about Swing

technology.

• http://www-106.ibm.com/developerworks/library/j-nativegui/—The site for Vogen,

Kirk's article "Create native, cross-platform GUI applications."

About the Author

Mauro Marinilli is currently finishing his second book, on professional Java graphical user

interfaces. He teaches CS courses at the University of Rome 3 in Italy while being active as a

consultant and as an academic researcher in case-based reasoning, Human Computer

Interaction and its applications to e-learning. You can email him at contact@marinilli.com.

